51 research outputs found

    On the Accuracy of Wireless Capsule Endoscope RF and Visual Localization

    Get PDF
    Wireless capsule endoscope (WCE) is becoming one of the most patient-friendly inspection device which provides visual investigation of entire gastrointestinal (GI) tract, while the other traditional (wired) endoscopic devices are usually designed for colon inspection. Locating abnormalities tract such as tumors, polyps and bleedings with wire-connected endoscope in GI tract is simple as long as we could measure the length of the wires inside human body. When WCE is applied, however, this becomes a critical challenge of examination since there is no wires connected to WCE while physicians need to find the exact locations of WCE to identify the position of abnormalities. To locate the WCE accurately, methods have come up in last decade including time of arrival (TOA) based methods, received signal strength (RSS) based methods, phase difference of arrival (PDOA) based methods, electromagnetic methods and video-based tracking methods, etc.. In this thesis, time of arrival (TOA), phase difference of arrival (PDOA) and video based localization methods are proposed and their performance are analyzed. We first propose an novel video-based tracking technique based on maximum mutual information. With this technique, we can tell the displacement and rotation between consecutive frames. Then in TOA chapter, the Cramer-Rao lower bound (CRLB) of TOA ranging inside homogeneous tissue is calculated first then three TOA ranging methods are proposed and compared with the CRLB which is used as the performance guideline. After that, PDOA based ranging technique is applied exploiting phase difference of two signals. Since the phase difference is taken into consideration, the ranging ambiguity is eliminated. We also evaluate the performance of the proposed PDOA ranging method. Finally, these ranging methods are evaluated in non-homogeneous tissues, the results of which are also compared to that in homogeneous tissue to analyze the impact of non-homogeneity

    The Non-Perturbative Quantum Nature of the Dislocation-Phonon Interaction

    Full text link
    Despite the long history of dislocation-phonon interaction studies, there are many problems that have not been fully resolved during this development. These include an incompatibility between a perturbative approach and the long-range nature of a dislocation, the relation between static and dynamic scattering, and the nature of dislocation-phonon resonance. Here by introducing a fully quantized dislocation field, the "dislon"[1], a phonon is renormalized as a quasi-phonon, with shifted quasi-phonon energy, and accompanied by a finite quasi-phonon lifetime that is reducible to classical results. A series of outstanding legacy issues including those above can be directly explained within this unified phonon renormalization approach. In particular, a renormalized phonon naturally resolves the decades-long debate between dynamic and static dislocation-phonon scattering approaches.Comment: 5 pages main text, 3 figures, 10 pages supplemental material

    Robust control of a silicone soft robot using neural networks

    Get PDF
    International audienceThis paper deals with the robust controller design problem to regulate the position of a soft robot with elastic behavior, driven by 4 cable actuators. In this work, we first used an artificial neural network to approximate the relation between these actuators and the controlled position of the soft robot, based on which two types of robust controllers (type of integral and sliding mode) are proposed. The effectiveness and the robustness of the proposed controllers have been analyzed both for the constant and the time-varying disturbances. The performances (precision, convergence speed and robustness) of the proposed method have been validated via different experimental tests

    Phonon Hydrodynamic Heat Conduction and Knudsen Minimum in Graphite

    Get PDF
    In the hydrodynamic regime, phonons drift with a nonzero collective velocity under a temperature gradient, reminiscent of viscous gas and fluid flow. The study of hydrodynamic phonon transport has spanned over half a century but has been mostly limited to cryogenic temperatures (∼1 K) and more recently to low-dimensional materials. Here, we identify graphite as a three-dimensional material that supports phonon hydrodynamics at significantly higher temperatures (∼100 K) based on first-principles calculations. In particular, by solving the Boltzmann equation for phonon transport in graphite ribbons, we predict that phonon Poiseuille flow and Knudsen minimum can be experimentally observed above liquid nitrogen temperature. Further, we reveal the microscopic origin of these intriguing phenomena in terms of the dependence of the effective boundary scattering rate on momentum-conserving phonon-phonon scattering processes and the collective motion of phonons. The significant hydrodynamic nature of phonon transport in graphite is attributed to its strong intralayer sp2 hybrid bonding and weak van der Waals interlayer interactions. More intriguingly, the reflection symmetry associated with a single graphene layer is broken in graphite, which opens up more momentum-conserving phonon-phonon scattering channels and results in stronger hydrodynamic features in graphite than graphene. As a boundary-sensitive transport regime, phonon hydrodynamics opens up new possibilities for thermal management and energy conversion. Keywords: collective drift motion; first-principles calculation; Knudsen minimum; Phonon hydrodynamic; phonon Poiseuille flo

    Defects Vibrations Engineering for Enhancing Interfacial Thermal Transport

    Full text link
    To push upper boundaries of effective thermal conductivity in polymer composites, a fundamental understanding of thermal transport mechanisms is crucial. Although there is intensive simulation research, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide); we choose polar polyvinyl alcohol (PVA) as a matrix model; and we identify how thermal transport occurs across heterogeneous interfaces. Measured thermal conductivities of in PVA/defective filler composites is higher than those of PVA/perfect filler composites, while measured thermal conductivities in defective fillers are lower than those of perfect fillers. An effective quantum mechanical model is developed, showing that the vibrational state of the defective level plays a critical role in enhancing the thermal conductivity with increased defect concentration. Our experimental and model results have suggested that defects in polymer composites may enhance thermal transport in polymer composites by promoting vibrational resonant couplings.Comment: Enclosed: (i) Main Manuscript, including 5 main figures. (ii) Supplementary Information, including 16 Supplementary Figures and one self-contained theoretical sectio

    Deep Geophysical Anomalies Beneath the Changbaishan Volcano

    Get PDF
    Subsurface imaging is key to understanding the origin of intraplate volcanoes. The Changbaishan volcano, located about 2,000 km away from the western Pacific subduction zone, has several debated origins. To investigate this, we compared regional seismic tomography with the electrical resistivity results and obtained high-resolution 1D and quasi-2D velocity-depth profiles. We show that the upper mantle is characterized by two anomalies exhibiting distinct features which cannot be explained by the same mechanism. We document a localized low-velocity anomaly atop the 410-km discontinuity, where the P-wave velocity is reduced more than that of the S-wave (i.e., lower Vp/Vs). We propose that this anomaly is caused by the reduction of the effective moduli during the phase transformation of olivine. The other anomaly, located between 300 and 370 km depth, reveals a significant reduction of the S-wave velocity (i.e., higher Vp/Vs), associated with a reduction of the electrical resistivity, altogether consistent with partial melting
    • …
    corecore